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§ 1. The theory of deduction based on the method of
suppositions.

In 1926 Prof. J. Ł u k a s i e w i c z called attention to the
fact that mathematicians in their proofs do not appeal to the
theses of the theory of deduction, but make use of other methods
of reasoning. The chief means employed in their method ist that
of an arbitrary supposition. The problem raised by Mr. Ł u-
k a s i e w i c z was to put these methods unter the form of
structural rules and to analyze their relation to the theory of
deduction. The present paper contains the solution of that
problem.1)

Here we consider as structural rules only those which re-
fer to the external appearance of expressions. It is possible to
formulate such rules only for a formal system in which all pro-
positions are written in symbols. In the present paper, we
shall use Mr. Ł u k a s i e w i c z’s 2) bracket - free symbolism.
The implication „if α, then β“ will be symbolized by „Cαβ“ and
the negation „not α“ by „Nα“. In the above, α und β stand for
significant expressions of the system. The significant
expression built up by means of „C“ and „N“ can be defined
____________

1) The first results on that subject obtained by the author in 1926
at Prof. Ł u k a s i e w i c z’s seminar were presented at the First Polish
Mathematical Congres in Lwów in 1927 and were mentioned in the pro-
ceedings of the Congress: Kalçga pamiqtkowa pierwszego polskiego zjazdu
matematycznego, Kraków 1929.

J. Ł u k a s i e w i c z, Elementy logiki matematycznej. Opracował
M. Presburger, Warszawa 1929 (litogr.) p. 38 ss. - J. Ł u k a s i e w i c z
und A. Tarksi. Untersuchungen über den Aussagenkalkül. Comptes
Rendus des séances de la Soc. des Sciences et des Lettres de Varsovie, XXIII.
1930. Classe III.
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by the two following conditions: (1) such an expression con-
tains more variables than symbols "C", (2) no initial part of
this expression contains more variables than symbols "C". In
condition (2), we must take "part" in the sense of proper part,
i.e. as distinct from the whole. As to the variables, we shall ma-
ke use of small Latin lettres "p", "q", "r" etc. In accordance
with the above explanations, the symbolic expression "CpCCpqq"
can be read: "If p, then, if p implies q, q".

*
*                     *

We intend to analyze a practical proof by making use of
the method of suppositions. How can we convince ourselves of
the truth of the proposition "CpCCpqq"? We shall do it as fol-
lows.

Suppose p. This supposition being granted suppose Cpq.
Thus we have assumed "p" and "if p, then q". Hence q follows.
We then observe that "q" is a consequence of the supposition
"Cpq", and obtain as a deduction: "if p implies q, then q" i.e.
CCpqq. Thus having supposed "p", we have deduced this last
proposition; from this fact, we can infer CpCCpqq.

This last proposition does not depend upon any supposi-
tion. It would remain true even in case the suppositions used
above should be false. All such processes as the above grow
clearer, when we introduce prefixes denoting which propositions
are consequences of a given supposition. These prefixes will
contain numbers classifying the suppositions; thus the number
"1" will correspond to our first supposition "p". Such a number
must be written before the supposition to which it corresponds
and before all expressions which are assumed under the con-
viction that this supposition is true. One of the expressions
written within the scope of validity of the first supposition was
"suppose Cpq", its prefix therefore must begin with the num-
ber "1". On the other hand "Cpq", being a supposition itself,
will obtain its own number which will take the second place
in the prefix. "Cpq", being the first supposition made in the
scope of the former one, will also have "1" as its number, but
its  prefix  will  be  different,  namely  "1⋅1⋅".   The  dots  are  adjoined
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to the prefix in order to remove ambiguity. The word "suppose"
of the usual language will be symbolized by the letter "S" writ-
ten down immediately after the prefix. The above conventions
lead us to some new expressions which must be considered as
significant ones. In the following explanations, however we
shall retain for the term "proposition" the meaning already
given, namely the significant proposition of the usual theory of
deduction as above defined. Thus our sketch of demonstration
takes the following form:

1⋅Sp
1⋅1⋅SCpq
1⋅1⋅q
1⋅CCpqq
CpCCpqq

The reader will easily understand the following process:
2⋅SCNpNq
2⋅1⋅Sq
2⋅1⋅1⋅SNp
2⋅1⋅1⋅Nq

The supposition "Np" with the prefix "2⋅1⋅1⋅" leads us to
a contradiction consisting on the simultaneous validity of "q"
and "Nq". We can therefore deduce:

2⋅1⋅p
2⋅Cqp
CCNpNqCqp3)

________
3) In 1926 the system was expressed in another symbolism, which is

shown below for the same examples of reasoning:

CpCCpqq

p

CCpqq

Cpq

p

q
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We now intend to make possible the assuming of the abo-
ve expressions for theses of a deductive system whose structu-
ral rules we shall formulate. In the formulation of these rules,
we shall make use of some abbreviated modes of speaking
about the expressions written in the system. In order to avoid
any misunderstanding, we must always remember that, by an
expression, a thesis etc., we shall treat a given inscrip-
tion as a material object, just as Prof. S. L e ś n i e w-
s k i did in the explanations concerning his systems4).
Thus two inscriptions having the same appearance but writ-
_________

CCNpNqCpq

Certain expressions as "p" "q", "CNpNq" which have been written out-
side of some rectangles, have been repeated inside of them. In doing so, we
obeyed a particular rule which now, through the modification of others,
has become superfluous.

4) S. L e ś n i e w s k i. Grundzüge eines neuen Systems der Grundla-
gen der Mathematik. Fundamenta Mathematicae. Vol. XIV. 1929 p. 59 ss.
S. L e ś n i e w s k i. Über die Grundlagen der Ontologie. Comptes Rendus
d.s. de la Soc. des Sciences et des Lettres de Varsovie. XXIII. 1930. C1. III p.
115 ss. We use the terms "thesis", "system" with the same meaning as
Mr. L e ś n i e w s k i does.

CNpNq

Cqp

q

CNpNq

p

Np

CNpNq

Nq

q
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ten down in different places must never be taken as identical; they can
only be said to be equiform with each other.

In order to be able to draw examples illustrative of the
conventions we shall make, we may suppose that the steps of
proofs written above are already theses of the system and that
no other thesis exists. Consider a thesis containing a supposi-
tion, e.g. the thesis having the form "2⋅1⋅Sq". All other theses
having their initial parts equiform with the prefix "2⋅1⋅" are
those which have the following forms: "2⋅1⋅1⋅SNp", "2⋅1⋅1⋅Nq",
and "2:1:p". The class composed of a supposition α and of
all expressions which in other theses are preceded by initial
parts equiform to the prefix of α will be called the domain of
the supposition α. Thus in our example, the domain of the sup-
position having the form "q" is a class of which the elements
have the following forms. "q", "1⋅SNp", "1⋅Nq", and "p".
Besides domains of suppositions, we shall give the name
"domain" to the class of all theses belonging to the system.
This will be called the absolute domain 5).

The meaning of the word "domain" like that of "system"
depends upon the set of theses which are written down up to
a given moment. The domains grow wider in conformity with
the development of the system, for they obtain new elements.
The absolute domain is assumed as existing, though empty, be-
fore the first thesis has been written.

In reality, the rules we shall give will enable us to subjoin
new theses to the system. Nevertheless, for the sake of brevity,
we shall use other words for expressing this fact in the formu-
lation of the rules. So we shall say: "It is allowed to subjoin
every expression satisfying some condition Φ to a given do-
main D" and by so saying we shall mean what can be expres-
sed more exactly as follows: "Given a domain D, it is allowed
_________

5) The class la taken here in the meaning employed by A. N. W h i-
t e h e a d and B. R u s s e l l in Principia Mathematica, Vol. I Cambridge
1925. It is possible to understand the domain as a class of expressions in
conformity with Mr. L e ś n i e w s k i' s view of a class as a material object,
but in that case the subsequent explanations would have to be modified
and the formulation of the rules would become more complicated.
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to subjoin to the system a new thesis which contains an expres-
sion satisfying the condition Φ and which belongs to a new do-
main composed of the elements of the forrner domain D and of this
expression".

This abbreviation will be applied in the following rule I.

Rule I. To every domain D, it is allowed to subjoin an
expression composed successively:

(1) of a number not equiform with the initial number of
any other element of the domain D,

(2) of a dot,
(3) of a symbol "S" and
(4) of a proposition.

In virtue of this rule, we should be able to obtain some
expressions among the above written, for instance those having
the forms: "1⋅Sp", "1⋅1⋅SCpq", "2⋅1⋅Sq", "2⋅1⋅1⋅SNp".

Given two different domains D and D', where D is the do-
main of a supposition α and D' either the absolute domain or the
domain of a supposition ß whose prefix is equiform with an ini-
tial part of the prefix of α, we shall say that D is a subdomain
of D'. Thus the domain of the above mentioned supposition
"Np" with the prefix "2⋅1⋅1⋅" is a subdomain of the domain of
the supposition "q" with the prefix "2⋅1⋅". A proposition be-
longing to a domain will be called valid in every subdomain of
that domain. Thus the proposition "CpCCpqq" is valid in the do-
mains of suppositions "p", "Cpq", "CNpNq", "q" and "Np".

Rule II. If in the domain D of a supposition α a proposi-
tion p is valid, it is allowed to subjoin a proposition of the form
"Cαß', to the domain whereof D is an immediate subdomain.

Here we regard a given subdomain D of a domain D' as an
immediate subdomain then and only then, when D is not the
subdomain of any subdomain of D'. In our given example, the ru-
le II would allow us to obtain expressions which have the forms
"1⋅CCpqq" (in reference to "1⋅1⋅SCpq" and "1⋅1⋅q") and
"CCNpNqCqp" (from "2⋅SCNpNq" and "2⋅Cqp").

The next rule is a generalisation of the usual rule of infe-
rence (modus ponens):
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Rule III. Given a domain D in which two propositions
are valid, one of them being α and the other being composed
successively:

(1) of a symbol "C",
(2) of a proposition equiform with α,
(3) of a proposition ß,

it is allowed to subjoin to the domain D a proposition equiform
with ß.

As an example of the application of this rule, we may cite
the deduction of "1⋅1⋅q" from "1⋅Sp" and "1⋅1⋅SCpq".

It remains to formulate a rule embodying the principle of
reductio ad absurdum. We can distinguish between two forms
of this principle. The first form states: "Because the supposi-
tion α has led us to ß and not-ß, not-α must be the case". This
form perhaps is more natural than the other, but it has less de-
ductive power, as we shall see in § 3. Therefore we must use
the other form of the principle, mainly: "Because the suppo-
sition not-α has led us to ß and not-ß, α must be the case". This
form is embodied in the following structural rule:

Rule IV. Given a domain D of a supposition composed
successively of a symbol "N" and of a proposition α, if two pro-
positions ß and γ are valid in D such that γ is composed succes-
sively of a symbol "N" and of a proposition equiform with ß, it
is allowed to subjoin a proposition equiform with α to that do-
main whereof D is an immediate subdomain.

Example: the conclusion "2⋅1⋅p" from the premises
"2⋅1⋅SNp, "2⋅1⋅Sq" and "2⋅1⋅1⋅Nq".

*
*                     *

Thus we have formulated all the rules of our system which
has the pecularity of requiring no axioms. Now we shall
give some theses of this system. In order to facilitate reference
to various theses, we shall classify them independently of the
numbers constituting parts of theses.

Furthermore, since other systems will be developed in sub-
sequent chapters, we shall prefix to the numbers of theses the
letters "td" as abbreviation for αtheory of deduction". To the
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right of each thesis, we shall write the number of the rule used
in obtaining that thesis and the numbers of theses to which we
appeal. None of these numbers are parts of the theses in con-
trast to the numbers belonging to the prefixes.

We begin by repeating the theses which were obtained
above in an intuitive way.

td 1 1⋅Sp I
td 2 1⋅1⋅SCpq I
td 3 1⋅1⋅q III 2,1
td 4 1⋅CCpqq II 2,3
td 5 CpCCpqq II 1,4
td 6 2⋅SCNpNq I
td 7 2⋅1⋅Sq I
td 8 2⋅1⋅1⋅SNp I
td 9 2⋅1⋅1⋅Nq III 6, 8
td 10 2⋅1⋅p IV 8, 7 ,9
td 11 2⋅Cqp II 7, 10
td 12 CCNpNqCqp II 6, 11
td 13 1⋅2⋅Sq I
td 14 1⋅Cqp II 13, 1
td 15 CpCqp II 1, 14
td 16 1⋅3⋅SNp I
td 17 1⋅3⋅1⋅SNq I
td 18 1⋅3⋅q IV 17, 1, 16
td 19 1⋅CNpq II 16,18,
td 20 CpCNpq II 1,19
td 21 3⋅SCpq I
td 22 3⋅1⋅SCqr I
td 23 3⋅1⋅1⋅Sp I
td 24 3⋅1⋅1⋅q III 21,23
td 25 3⋅1⋅1⋅r III 22,24
td 26 3⋅1⋅Cpr II 23,25
td 27 3⋅CCqrCpr II 22,26
td 28 CCpqCCqrCpr II 21,27
td 29 4⋅SCpCqr I
td 30 4⋅1⋅SCpq I
td 31 4⋅1⋅1⋅Sp I
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td 32 4⋅1⋅1⋅Cqr III 29, 31
td 33 4⋅1⋅1⋅q III 30, 31
td 34 4⋅1⋅1⋅r III 32, 33
td 35 4⋅1⋅Cpr II 31, 34
td 36 4⋅CCpqCpr II 30, 35
td 37 CCpCqrCCpqCpr II 29, 36
td 38 5⋅SCNpp I
td 39 5⋅1⋅SNp I
td 40 5⋅1⋅p III 38,39
td 41 5⋅p IV 39,40,39
td 42 CCNppp II 38,41
td 43 6⋅SCCpqp I
td 44 6⋅1⋅SNp I
td 45 6⋅1⋅1⋅Sp I
td 46 6⋅1⋅1⋅CNpq III 20,45
td 47 6⋅1⋅1⋅q III 46,44
td 48 6⋅1⋅Cpq II 45,47
td 49 6⋅1⋅p III 43,48
td 50 6⋅p IV 44,49,44
td 51 CCCpqpp II 43,50

Although the last thesis does not contain any negation, we
made use of the rule of reductio ad absurdum in proving it. It
can be shown, in virtue of theorem 4 of § 3, that it is impossible
to avoid that rule in this proof.

td 52 7⋅St I
td 53 7⋅1⋅SNu I
td 54 7⋅1⋅1⋅Sp I
td 55 7⋅1⋅Cpt II 54, 52
td 56 7⋅1⋅2⋅Su I
td 57 7⋅1⋅2⋅1⋅SNp I
td 58 7⋅1⋅2⋅p IV 57, 56, 53
td 59 7⋅1⋅Cup II 56, 58

The domain having the prefix "7⋅1⋅" can be used for show-
ing an interesting property of systems dealing with supposi-
tions. In the suppositions valid in that domain, two variables
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appear: 't' and "u". We can assign to each of them the meaning
of a constant, namely to 't' that of the true proposition and to "u"
that of the false one. A precise analyzis would show that in the
domain with the prefix "7⋅1⋅" we can obtain all those proposi-
tions and only those which we are able to deduce in the usual
theory of deduction in which 't' and "u" would be constants
and the suppositions belonging to the theses td 52 and td 53
would be taken as supplementary axioms. Thus the domain in
question can be considered as a system of the theory of de-
duction with those two constants. The prefix "7⋅1⋅" is analogous
to the assertion sign of that system.

The above example shows the analogy between domains
and deductive systems. Every domain can be considered as a sy-
stem having its own axioms and constants, though not every
domain gives a complete system, much less an interesting one.
Thus the system we were occupied with in the present chapter
can be considered as composed of many systems. For this reason
this system will be called the composite system of the theory
of deduction and, in contrast to it, the usual system will be
called the simple one.

§ 2. The relation between the composite and the simple
                                system of the theory of deduction

Among the theses obtained in § 1 we find those which,
being taken as a set of axioms, give the complete simple system
of the theory of deduction. For instance the theses td 28, td 42
and td 20 are equiform with the axioms of Ł u ka s i e w i c z 6).

The simple system of the theory of deduction having "C"
and "N" as constant terms will be symbolized with capital let-
ters TD. The axioms of Ł u ka s i e w i c z are taken as the first
theses:

TD 1 CCpqCCqrCpr
TD 2 CCNppp
TD 3 CpCNpq
For purposes of brevity the theses of the composite system

will be called theses td, those of the simple system theses TD.
____________

6) Ł u ka s i e w i c z op. cit. Elementy logiki matematycnej p. 45.



   15  

Now let Φ denote the property exhibited by those theses TD
for which an equiform thesis td can be obtained. As we have
seen above the axioms TD 1, TD 2 and TD 3 have the proper-
ty Φ. Hence for proving that all theses TD have the same pro-
perty, it is sufficient to show that Φ is a hereditary property
with respect to both rules of the simple system. Suppose that α
is thesis TD having the property Φ and α(p1/ß1, p2/ß2,...pk/ßk)
is the result of replacing the variables by propositions ß1, ß2,
...ßk .We can see that a thesis equiform to α(p1/ß1, p2/ß2, ...pk/ßk)
can be obtained in the composite system as the result of a proof
analogous to that of the thesis td equiform to α. Only the fol-
lowing modifications have to be made: (1) instead of the varia-
bles pl, p2, ... pk, we must always write the corresponding pro-
positions ßl, ß2, ßk and (2) some numbers in the prefixes must
be changed. Thus α(p1/ß1, p2/ß2, ...pk/ßk) has the property Φ.

If now two theses TD having the forms "Cαß" and "α" have
the property Φ, the thesis TD of the form "ß" obtained from
them in virtue of the rule of inference has also the property Φ:
for, an equiform thesis td can be obtained in accordance with
the rule III. Thus we see that no rule of the simple system can
give us the first thesis TD which has not the property Φ. Hence
follows the following theorem 1:

Theorem 1. Given any thesis TD, we can obtain a thesis td
equiform with the former.

*
*                     *

It is obvious that such a theorem cannot be inverted, for
some theses td, not being "propositions", are meaningless in the
simple system. Their intuitive meaning can, however, be inter-
preted by means of a proposition which will be called the deve-
lopment of the given thesis td. Suppose that we have the fol-
lowing theses containing suppositions:

n1⋅S α1
n1⋅ n2⋅S α2

. . . . . . . . . . . . . .
n1⋅ n2⋅...nk⋅S αk

where k ≥ 1. Let ß be an element of the domain of the last sup-
position αk. It can happen that ß is identical with αk or not.
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In the first case the thesis containing β is written above, in the
second case this thesis has the form

n1⋅ n2⋅... nk⋅β
In both cases any expression of the form

Cα1 Cα2... Cαk β
will be called the development of the thesis containing β. Thus
we have defined the development of any thesis possessing a pre-
fix. In the case of a thesis which is a proposition β having no
prefix, the development proceeds by considering every proposi-
tion equiform with that thesis. In that case, the development can
be represented by the above given general schema by putting
k = 0. Now we are able to explain what it means for a simple
system and a composite one to be two formal systems of the
same theory. It occurs then and only then, when (1) for every
thesis of the simple system an equiform thesis can be obtained
in the composite one and (2) for every thesis of the composite
system we can obtain a development which is a thesis of the
simple system. Two such systems will be called correspondent to
each other. The two systems of theory of deduction TD and td
are correspondent systems, as is shown by theorem 1 and the
following theorem 2.

Theorem 2. Given any thesis td, we can obtain a thesis TD which
is its development.

It is known that, for any expression satisfying the method
of verification through substitution of the values 1 and 0 for va-
riables, we can obtain an equiform thesis TD. Hence for pro-
ving the theorem 2, it is sufficient to show that all developments
of theses td satisfy this method of verification. Consider an
arbitrary substitution, for variables, of the values: 1 standing
for the truth, 0 standing for the falsehood. The development
"Cα1 Cα2... Cαk β" receives the value 1, if at least one of the pro-
positions α1, α2,... αk has the value 0 or if ß has the value 1.
Now it can be easily shown that the property of having 1 as
value of the developments is hereditary with respect to all the
rules of the composite system, whence it follows that all theses td
have this property.



   17  

3. Regarding some incomplete systems of the theory of
                                              deduction.

The first question which we shall answer in the present
chapter is: which is the simple system correspondent to that
composite one in which no other rule than I, II, III holds and
in which "C" is the only constant term of the propositions? We
shall show that this simple system is the incomplete system
known as the "positive logic", based on H i 1 b e r t' s 7) four
axioms containing no negation. Here another set of axioms will
be taken, namely the following two taken from among those of
F r e g e 8), since the equivalence between the two sets of axioms
has been proved by Mr. Ł u k a s i e w i c z.

PTD 1 CpCqp
PTD 2 CCpCqrCCpqCpr
In the composite system with which we shall now deal, the

rules I, II and III are valid, but in rule I, we must give an-
other meaning to the term "proposition", for propositions can-
not contain the letter "N". This system will be symbolized by
"ptd" as an abbreviation for the "positive theory of deduction".

ptd 1 1⋅Sp I
ptd 2 1⋅1⋅Sq I
ptd 3 1: Cqp II 2,1
ptd 4 CpCqp II 1,3
ptd 5 2⋅SCPCqr I
ptd 6 2⋅1⋅SCpq I
ptd 7 2⋅1⋅1⋅Sp I
ptd 8 2⋅1⋅1⋅Cqr III 5,7
ptd 9 2⋅1⋅1⋅q III 6,7
ptd 10 2⋅1⋅1⋅r III 8,9
ptd 11 2⋅1⋅Cpr III 7,10
ptd 12 2⋅CCpqCpr II 6,11
ptd 13 CCPCqrCCPqCpr II 5,12
Having obtained the theses ptd 4 and ptd 13, equiform to the

axioms PTD 1 and PTD 2, we can prove the following
__________

7) D. H i l b e r t. Die logischen Grundlagen der Mathematik. Math.
Annalen, Vol, 88. 1922, p. 153.

8) G. F r e g e. Begriffsschrift. Halle 1879, p. 26.
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theorem by means of a demonstration analogous to that of the
theorem 1.

Theorem 3. Given any thesis PTD, we can obtain an equi-
form thesis ptd.

*
*                     *

We shall be able to state that the systems PTD and ptd
are correspondent, if we prove the following theorem.

Theorem 4. Given any thesis ptd, it is possible to obtain
a thesis PTD which is its development.

The proof requires reference to some theses PTD which
will be obtained for that purpose below. As in Mr. Ł u k a s i e-
w i c z' s works 9), all the theses with exception of the axioms
will be preceded by the proof lines which will indicate the appli-
cations of the rules. The numbers in those lines are the num-
bers of theses PTD.  

        2q/Cqp, r/p * C1qCqp   C1   3
PTD 3 Cpp

        1p/CCpCqrCCpqCpr, q/s * C2   4
PTD 4 CsCCpCqrCCpqCpr

        2 p/Cpq, q/CrCpq, r/CCrpCrq * C4 p/r,
           q/p, r/q, s/Cpq   C1 p/Cpq, q/r   5

PTD 5 CCpqCCrpCrq
        5 q/Cqp *C1 -6

PTD 6 CCrpCrCqp
        5 p/CpCqr, q/CCpqCpr, r/s * C 2   7

PTD 7 CCsCpCqrCsCCpqCpr
        5 p/CCspCsCqr, q/CCspCCsqCsr, r/CpCqr
                  * C7 s/Csp, p/s  C5 q/Cqr, r/s   8

PTD 8 CCpCqrCCspCCsqCsr
*

*                     *
        1 p/Cpp  * C3   9

PTD 9 CqCpp
        1 p/CqCpp, q/r  * C9   10

PTD 10 CrCqCpp
_________
9) J. Ł u k a s i e w i c z  opera citata.
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By repeating the above process, we can obtain any thesis having
the form:

Ik Cpk Cpk-1 ...Cp1p1 (k ! 1)
*

*                     *
      6 r/p, p/Cqp, q/r * C 1   11

PTD 11 CpCrCqp
      6 r/p, p/CrCqp, q/s * C11   12

PTD 12 CpCsCrCqp
Proceeding in an analogous way, we can prove any pro-

position
IIk,0 CpCqkCqk-1 ... Cq1p (k ! 1)

and then, by means of repeated use of the syllogism
PTD 5, we can prove each thesis:

II CCrl Crl-1... Cr1pCrl Crl-1 ... Cr1Cqk Cqk-1 ... Cq1p
(k ! 1, l !  0)

as shown by the examples below.
      5 q/CsCrCqp, r/t * C 12   13

PTD 13 CCtpCtCsCrCqp
      5 p/Ctp, q/CtCsCrCqp, r/u * C 13   14

PTD 14 CCuCtpCuCtCsCrCqp

*
*                     *

The proof of the third scheme containing the needed theses
can be illustrated as below:

       8 p/CrCpq, q/Crp, r/Crq * C2 p/r, q/p,
          r/q   15

PTD 15 CCsCrCpqCCsCrpCsCrq
       8 p/CsCrCpq, q/CsCrp, r/CsCrq, s/t * C 15
             16

PTD 16 CCtCsCrCpqCCtCsCrpCtCsCrq

The third scheme has the form:
IIIk CCrkCrk-1 ... Cr1CpqCCrkCk-1...Cr1pCrkCrk-1...Cr1q

(k ! 1)
lf k 1, this scheme represents PTD 2 with different va-

riables only.
*

*                     *
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Consider now the following property ψ: a thesis ptd is said
to have the property ψ, if and only if we can obtain a thesis
PTD which is its developement. Suppose that theses ptd obtained
up to a given moment have the property ψ and that ζ is the next
thesis ptd subjoined to the system. In all such cases ζ has
the property ψ, as we show below.

1st case. Let ζ be a thesis obtained in virtue of the rule 1.
Its development then has the form

Cα1 Cα2... Cαk αk

and can be obtained in the simple system by means of a sub-
stitution in the thesis Ik.

2nd case. Let ζ be a thesis which has been subjoined in
virtue of the rule II. The application of that rule is possible
only when some proposition P is valid in the domain of a sup-
position α . The development of the thesis ζ must have the form

(*)    Cα1 Cα2... Cαm  ß
where α1, α2,...αm stand for suppositions valid in the domain
of αm. The proposition ß, being valid in the domain of α, must
be an element (a) of the absolute domain or (b) of the domain
of the supposition αm or (c) of the domain of one of the sup-
positions α1, α2,...αm-1. In the case (b) this development will be
identical with (*), in the case (a) it will have the form of ß and
in the case (c) the form

   Cα1 Cα2... Cαl  ß
where l satisfies: 1 " l < m. In any case (*) follows from that de-
velopment: in accordance with the thesis IIm,0 in the case (a)
and in accordance with the thesis IIm-l,l in the case (c).

3rd case. Let ζ be a thesis ptd obtained in virtue of the
rule III. If its propositional part is ß, its development must be
                                                     ß
or

(**)                          Cα1 Cα2... Cαk  ß

If ß  is the development of ζ, two premisses having the form of
"Cγß" "γ"must be valid in the absolute domain and, being their
own developments, they must be equiform with some theses
PTD from which we can obtain a thesis PTD which is equiform
with ß and therefore a development of ζ. If now  (**) is the de-
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velopment of ζ, ß is an element of the domain of the supposi-
tion αk, and the premisses "Cγß" and "γ" are valid in that do-
main. Thus by means of the rule II we are able to obtain theses
having as developments the following propositions:

Cα1 Cα2... Cαk  Cγ ß
Cα1 Cα2... Cαk  γ

As has been shown above it is possible to obtain such develop-
ments as theses PTD. Hence (**) follows by help of the the-
sis IIIk   .

Thus we see that ζ has in all cases the property ψ  and we
can never obtain the first thesis ptd not having the property ψ.
Hence follows that all the theses ptd have the property ψ, and
the theorem 4 is proved.

*
*                     *

It remains to analyze the first of the two forms of the
reductio ad absurdum which were mentioned in § 1. We
shall consider a system in which two terms "C" and "N", are
constants. Its rules are I, II, III and a rule IVa formulated
below.

Rule IVa. When in the domain D of a supposition α two
propositions ß and γ are valid and γ has the form "Nß", it is allowed to
subjoin a proposition of the form "Nα" to that do-
main in respect to which the domain D is an immediate subdo-
main.

This system (it may be referred to as "itd") corresponds
to the simple system constructed by K o 1 m o g o r o f f 10) for
the purpose of embodying the laws of the intutionist logic of
B r o u w e r. As axioms we shall take: the two axioms of the
positive logic which are equivalent to the four axioms of H i 1-
b e r t employed by K o l m o g o r o f f

ITD 1 CpCqp
ITD 2 CCpCqrCCpqCpr

and the axiom subjoined by K o 1 m o g o r o f f to those of the
positive logic
__________

10) A. N. K o 1 m o g o r o f f. 0 principie tertium non datur. Mate-
matičeski Sbornik. Vol. XXXII, p. 651.
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ITD 3 CCpqCCpNqNp
The system ITD is not only incomplete but does not even

contain some theses belonging to the system built by H e y-
t i n g for the same purpose 11). One of H e y t i n g ' s axioms,
                                                 CNpCpq
cannot be obtained as a thesis ITD, as can be shown by the
Ł u k a s i e w i c z - B e r n a y s method with help of the follo-
wing matrix:

C 0  1 N
0 1  1 1
1 0  1 1

Theorem 5. Given any thesis ITD, it is possible to obtain
a thesis itd equiform with it.

Such a theorem can be proved as was done für the theo-
rems 1 and 3. Theses itd equiform to the axioms ITD 1 and
ITD 2 can be obtained on the same way as in the system ptd.
The proof of a thesis equiform to ITD 3 is given below.

itd 1 1⋅SCpq I
itd 2 1⋅1⋅SCpNq I
itd 3 1⋅1⋅1⋅SP I
itd 4 1⋅1⋅1⋅q III  1,3
itd 5 1⋅1⋅1⋅Nq III 2,3
itd 6 1⋅1⋅Np IVa  3,4,5
itd 7 1⋅CCpNqNp II 2,6
itd 8 CCpqCCpNqNp II 1,7

Theorem 6. Given any thesis itd, it is possible to obtain
a thesis ITD which is its development.

The demonstration is analogous to that of theorem 4.
All theses PTD used in it have their equiform theses ITD,
because all axioms of the system PTD are axioms ITD. Thus
the schemes of theses Ik, IIk,l, and IIIk, can be applied in order
to show that none of the rules I, II, III can lead to the first
among theses itd which cannot have any thesis ITD as deve-
___________

11) A. H e y t i n g. Die formalen Regeln der intuitionistischen Lo-
gik. Sitzungsber. d. Preuss. Ak. d. Wiss. 1930. Phys.-Math. Kl. p. 45 ss.
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lopment. It remains to prove that the same property holds for
the rule IVa. Let

Cα1 Cα2... Cαkαk

be the development of the thesis containing the supposition αk

which has led us to the contradiction "ß" and "Nß". Since tho-
se propositions are valid in the domain of ak we can prove,
as was done in the demonstration of the theorem 4, that the
following theses ITD can be obtained

(***)                                Cα1 Cα2... Cαkß
and

(****)                              Cα1 Cα2... CαkNß
If k = 1, the thesis just now subjoined in virtue of the rule IVa
has the form

Cα1 Cα2... Cαk-1Nαk

and its development which has the same form, can be obtained
as a thesis ITD, by means of ITD 3. If k > 1, the development
of the subjoined thesis can be obtained from (***) and (****)
by means of the thesis
IVk CCpk Cpk-1...Cp1qCCPk Cpk-1...Cp1NqCpkCpk-1...Cp2Np1
This scheme becomes ITD 3, when k = 1. As to the theses re-
presented by this scheme for other values of k, they can be
obtained from ITD 3 by use of the thesis PTD 8.

§ 4. The extended theory of deduction.

The following question arises: By what means is it possible
to transform the more complicated theories into systems in
which our rules may hold? In those theories, beyond the rules
which replace the theory of deduction, some others are required;
they are those concerning the apparent variable. As to them,
in the present and the next chapters we attempt to
transform them into structural rules adapted to the
symbolism of composite systems. For the present, we shall
take as a basis the extended theory of deduction 12). Besides
all the symbols met with till now, that theory contains one mo-
________

12) J. Ł u k a s i e w i c z   op. cit. Elementy § 8 - Ł u k a s i e w i c z
and A. T a r s k i  op. cit. § 5.
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re   the general quantifier "Π"' which appears in the connexions
"Πpα", "Πqα" etc., α being a proposition which in this case may
or not contain a variable of the form "p", "q" etc. ""Πpα" may
be read: "α, whatever a proposition p may be" or in short: "for
every p, α (holds)", because. in the system in question, we deal
with no other variables than propositional ones. We shall pre-
sent examples of reasoning with the use of "Π", leaving the
symbolism of the composite systems unchanged.

etd 1 1⋅SΠqCqp
The above supposition means: "Cqp, whatever proposition q
may be". Hence follows "CCppp", because "Cpp" is a proposi-
tion. Thus we may write

etd 2 1⋅CCppp
In fact, the rule of substitution which we shall formulate

will enable us to accept the above as a thesis. In accordance to
the rules of suppositions, we can deduce

etd 3 2⋅Sp I
etd 4 Cpp II 3,3
etd 5 1⋅p III 2,4
etd 6 CΠqCqpp II 1,5
etd 7 2⋅1⋅Sq I
etd 8 2⋅Cqp II 7,3
"Cqp" is valid in a domain in which no supposition concer-

ning "q" is valid. In that thesis, "q" is a quite arbitrary propo-
sition and all the results we have obtained concerning it could
be accepted for any other proposition. That is the intuitive
reason for which the rule VI will allow us to write

etd 9 2⋅ΠqCqp
Hence

etd 10 CpΠqCqp II  3,9

*                     *
The rule of substitution in the system etd will be formula-

as follows.
Rule V. To any domain D in which a proposition α is va-

lid, where α is composed successively:
(1) of a general quantifier "Π"
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(2) of a variable ζ and
(3) of a proposition ß,

it is allowed to subjoin a proposition γ obtained from ß by
means of substitution for variables bound to ζ .

The above condition concerning γ must be explained by
the following detailed description:

As to their form, ß and γ differ only in this, that instead of
all those variables of ß which are bound to ζ, γ contains propo-
sitions

(1) equiform with one another and
(2) having the following property: all real variables of

those propositions are real variables of γ.
We must still explain some expressions in the above by

means of structural description. A variable ζ is said to be
a real variable of a proposition α then and only then, when it
does not belong to any significant part 13) of α beginning with
a quantifier "Π" und a variable equiform with ζ.

A variable η is bound to a variable ζ then und only then,
when they are equiform with each other and they belong to
a proposition composed successively:.

(1) of a quantifier "Π",
(2) of the variable ζ,
(3) of a proposition in which η is a real variable.
Rule VI. lf a proposition α is valid in the domain D, it is

allowed to subjoin a proposition of the form " Πζα" to the do-
main D, provided that ζ is a variable not equiform with any
real variable of a supposition valid in D.

The rules I, II, III, IV remain in force, but as to I the no-
tion of the "proposition" is altered. With help of all our rules
we can obtain the following theses

etd 11 2⋅2⋅SCpq I
etd 12 2⋅2⋅q III 11,3
etd 13 2⋅CCpqq II 11,12
etd 14 CpCCpqq II 3,13
etd 15 ΠqCpCCpqq VI 14

____________
13) The "part" is understood here in such a way that it can be identical with

the whole.
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etd 16 ΠpΠqCpCCpqq VI 15
etd 17 ΠpCpp VI 4

*
*                     *

Analogously we can obtain all theses of the usual theory
of deduction where each is preceded by quantifiers. We shall
now present a process which will illustrate how it is possible
to apply definitions in the composite system.

etd 18 3⋅SCuΠpp I
etd 19 3⋅1⋅SCΠppu I
etd 20 3⋅1⋅1⋅SCtNu I
etd 21 3⋅1⋅1⋅1⋅SCNut I
The above four suppositions can be considered as the de-

finitions of two constant terms: "u" being equivalent to "Πpp"
and "t" equivalent to "Nu". The domain with the prefix
"3⋅1⋅1⋅1" gives us the enlarged theory of deduction with those
constants.

etd 22 3⋅1⋅1⋅1⋅1⋅Su I
etd 23 3⋅ 1⋅1⋅1⋅1⋅Πpp III 18,22
etd 24 3⋅1⋅1⋅1⋅1⋅p V 23
etd 25 3⋅1⋅1⋅1⋅Cup II 22,24
etd 26 3⋅1⋅1⋅1⋅ΠpCup VI 25
The false proposition 'u' implies anything.
etd 27 3⋅1⋅1⋅1⋅2⋅Sp I
etd 28 3⋅1⋅1⋅1⋅2⋅1⋅SNt I
etd 29 3⋅1⋅1⋅1⋅2⋅1⋅1⋅SNu I
etd 30 3⋅1⋅1⋅1⋅2⋅1⋅1⋅t III 21,29
etd 31 3⋅1⋅1⋅1⋅2⋅1⋅u IV 29,30,28
etd 32 31⋅1⋅1⋅2⋅1⋅Πpp III 18,31
etd 33 3⋅ 1⋅1⋅1⋅2⋅1⋅Np V 32
etd 34 3⋅ 1⋅1⋅1⋅2⋅t IV 28,27,33
etd 35 3⋅1⋅1⋅1⋅Cpt II 27,34
etd 36 3⋅1⋅1⋅1⋅ΠpCpt VI 35
The true proposition 't' is implied by anything.
etd 37 3⋅1⋅1⋅CCNutΠpCpt II 21,36
etd 38 3⋅1⋅CCtNuCCNutΠpCpt II 20,37
etd 39 3⋅1⋅ΠtCCtNuCCNutΠpCpt VI 38
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etd 40 3⋅1⋅CCNuNuCCNuNuΠpCpNu V 39
etd 41 3⋅1⋅CNuNu V 17
etd 42 3⋅1⋅CCNuNuΠpCpNu III 40,41
etd 43 3⋅1⋅ΠpCpNu III 42,41
The above process, leading us from etd 36 to etd 43 shows

how it is possible to carry a proposition containing a defined term
out of the domain of the definition by replacing at the same
time the definiendum "t" by the definiens "Nu". With the same
process, we can transport the proposition "ΠpCpNu" to the abso-
lute domain by replacing "u" by "Πpp":

etd 44 3⋅1⋅CCΠppuΠpCpNu II 19,43
etd 45 CCuΠppCCΠppuΠpCpNu II 18,44
etd 46 ΠuCCuΠppCCΠppuΠpCpNu VI 45
etd 47 CCΠppΠppCCΠppΠppΠpCpNΠpp V 46
etd 48 CΠppΠpp V 17
etd 49 CCΠppΠppΠpCpNΠpp III 47,48
etd 60 ΠpCpNΠpp III 49,48
The system ctd corresponds to the simple system of the

enlarged theory of deduction. The needed proofs are analogous
to those of the theorems 1 and 2.

§ 5. Application to the calculus of functions.

We shall now consider a theory analogous to the theory
of apparent variable of the Principia Mathematica and to H i 1-
b e r t ' s calculus of functions. Contrary to the preceding chap-
ter, we shall deal now with the individual apparent variable
rather than with the propositional one. The individual variables
will be symbolized by small Latin letters "x", "y" etc. and will
be the arguments of functions having propositions as values.
The symbols of those functions are the small Greek letters
"ϕ", "ψ"  etc. The arguments will follow those letters; brackets are
superfluous 14). The quantifiers "Π" ought to be followed by
an individual variable and a proposition e.g. as in "Πxϕx" or
_____________

14) Brackets are omitted in such functions by J. H e r b r a n d. See
his Recherches sur la théorie de démonstration. Comptes Rendus d.s. de la
Soc. des Lettres et des Science de Varsovie. XXIII. 1930.
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"ΠxCpq" which are to be read: "for every (indvidual) x, ϕx
holds" and "for every (individual) x, Cpq holds".

The rules I, II, III, IV, V and VI, when adapted to such a
theory, would give a system correspondent to some simple sy-
stem differing from those of Principia Mathematica and of
H i 1 b e r t only as a consequence of the fact that the notion of
significance is different. In such a system, we should be able to
have a thesis of the following form:

CΠxϕxNΠxNϕx
The intuitive meaning of "NΠxNϕx" is: "for some x, ϕx holds".
The above thesis therefore means: "If for every x, ϕx, then for
some x, ϕx". In the null field of individuals (Individuenbereich),
i.e. under the supposition that no individual exists in the world,
this proposition is false. Thus the system states the existence
of at least one individual. But whether individuals exist or not,
it is better to solve this problem through other theories. We
shall present therefore a system of the calculus of functions,
where all the theses will be satisfied in the null field of in-
dividuals.

In that system, we must avoid any thesis which is a propo-
sition with real individual variables, for such theses lead us to
assume others requiring the existence of individuals. As to the
notion of real variables in the composite system, the circum-
stances are quite different from those of the simple system.
Symbols of variables which are not apparent variables do not
merit the name of variable at all. We deal with such a term as
with a given constant, though it is neither a primitive term nor
a defined one. It is a constant the meaning of which, although
undefined, remains unaltered through the whole process of
reasoning. In practice, we often introduce such undefined con-
stants in the course of a proof. For example we say: "Consider
an arbitrary x" and then we deduce propositions which can be
said to belong to the scope of constancy of the symbol "x".
This process of reasoning will be applied in our system. We
shall give an example of such a reasoning in the calculus of
functions.
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Suppose ΠxΠyϕxy. Consider now an arbitrary individual z.
According to our supposition, "Πyϕxy" holds whatever indivi-
dual x may be, hence Πyϕzy holds too. Repeating the same pro-
cess in respect to y, we obtain ϕzz. We have obtained this result
for an arbitrary z, therefore our result must be "for every z,
ϕzz holds" i.e. Πzϕzz. This is a consequence of the supposition
"ΠxΠyϕxy", so we can take as a thesis

CΠxΠyϕxyΠzϕzz
We shall repeat the same proof in symbols.
cf 1 1⋅ SΠxΠyϕxy

Now we shall write the expression "Consider an arbitrary z"
cf 2 1⋅1⋅Tz

"T" is here a new constant analogous to the symbol of suppo-
sition "S".

The arbitrary constant "z" will be called the term and the
scope of its constancy the domain of that term. Further steps
of our proof can be easily formalized.

cf 3 1⋅1⋅Πyϕzy
cf 4 1⋅1⋅ϕzz
cf 5 1⋅Πzϕzz
cf 6 CΠxΠyϕxyΠzϕzz

We shall make use of the abbreviated modes of speaking
which were introduced in the § 1 in connection with supposi-
tions and their domains, adapting them now to the terms and
their domains. Thus in any domain D, we shall consider as
valid any term whose prefix is equiform to an initial part of
the prefix of the thesis containing the supposition or the term
belonging to D. The new rules will be formulated below.

Rule Va. It is allowed, to any domain D in which
(1) a term ζ and
(2) a proposition composed of a quantifier "Π", of a varia-

ble η and of a proposition α
are valid, to subjoin a proposition which differs, as to its form,
from α only in this respect, that all variables bound to η are re-
placed by symbols equiform with ζ no one of which is an appa-
rent variable.
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Rule Vla. If in the domain D of a term ζ a proposition α
is valid, it is allowed to subjoin a proposition of the form "Πζα" to
that domain whereof the domain D is an immediate subdo-
main.

Rule VII. Given a domain D, it is allowed to subjoin to it any
expression composed successively:

(1) of a number not equiform with the initial number of
any element of the domain D,

(2) of a dot,
(3) of the symbol "T" and
(4) of a term not equiform with any term valid in the

domain D.

The rules formulated in § 1 remain unaltered for the sy-
stern of with the exception of rule I which must be transfor-
med into rule Ia.

Rule Ia. Given a domain D, it is allowed to subjoin to it
any expression composed successively:

(1) of a number not equiform with the initial number of
any element of the domain D,

(2) of a do t,
(3) of the symbol "S",
(4) of a proposition significant in the domain D.

We regard a proposition α, as significant in the domain D,
if every real variable of α is equiform with some term valid in D.

*
*                     *

We shall give some further examples of theses of the sy-
stem cf.

cf 7 1⋅1⋅1⋅Tv VII
cf 8 1⋅1⋅1⋅ϕzy Va 3, 7
cf 9 1⋅1⋅ Πvϕzv VIa 7, 8
cf 10 1⋅ ΠzΠvϕzv VIa 2, 9
cf 11 1⋅2⋅Tx VII
cf 12 1⋅2⋅1⋅Ty VII
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cf 13 1⋅2⋅1 Πvϕyv Va 10, 12
cf 14 1⋅2⋅1 ϕyx Va 13, 11
cf 15 1⋅2⋅ Πyϕyx VIa 12, 14
cf 16 1⋅ΠxΠyϕyx VIa 11, 15
cf 17 CΠxΠyϕxyΠxΠyϕyx II 1, 16
cf 18 2⋅SΠxCϕxψx  Ia
cf 19 2⋅1⋅SΠxϕx Ia
cf 20 2⋅1 1⋅Tx VII
cf 21 2⋅1⋅1⋅Cϕxψx Va 18, 20
cf 22 2⋅1⋅1⋅ϕx Va 19, 20
cf 23 2⋅1⋅1⋅ψx III 21, 22
cf 24 2⋅1⋅Πxψx VIa 20, 23
cf 25 2⋅ CΠxϕxΠxψx II 19, 24
cf 26 CΠxCϕxψxCΠxϕxΠxψx II 18, 25
cf 27 3⋅Sp Ia
cf 28 3⋅1⋅Tx VII
cf 29 3⋅ Πxp VIa  28, 27
cf 30 CpΠxp II 27, 29

The rules of the composite systems can be applied to dif-
ferent logical or mathematical systems. In such cases, it can
happen that new rules may be required. For instance, it we
want to build the composite system of the theory of deduction
having besides "C" and "N" the new constant term of conjunc-
tion (logical product), it is sufficient to give three new rules.
The first would permit us to subjoin to a domain a conjunction
composed of propositions equiform with some propositions va-
lid in that domain, and the others would allow to subjoin
a proposition equiform with the first and a proposition equiform
with the second member of a valid conjunction.

By building composite systems containing variables of dif-
ferent kinds from those already taken into consideration, we
must suitably adapt the rule of substitution, and either the ru-
le VI or the two rules Vla and VII to the new variables.
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As to the application in the mathematical theories, we can
expect that the composite systems of logic will be more suited
to the purposes of formalizing practical proofs, than are the
simple ones. The use of the theses of the theory of deduction
for that purpose is so burdensome that it is avoided even by the
authors of logical systems. In more complicated theories the use
of theses would be completely unproductive.

________


